Structural Diversity of the Epigenetics Pocketome

Alexandre Cabaye ${ }^{1, \$}$, Kong T Nguyen ${ }^{1, \#}$, Lihua Liu ${ }^{1}$, Vineet Pande ${ }^{2}$, Matthieu Schapira ${ }^{1,3, *}$
${ }^{1}$ Structural Genomics Consortium, 101 College street, University of Toronto, Toronto, ON, M5G 1L7, Canada
${ }^{2}$ Discovery Sciences, Janssen Pharmaceutical Companies of Johnson \& Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
${ }^{3}$ The Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
${ }^{\$}$ Present address: Université Paris Diderot, 35 rue Hélène Brion, 75205 Paris, France
\#Present address: Proteorex Therapeutics Inc., 100 College street, suite 302, Toronto, ON M5G 1L5, Canada
*To whom correspondence should be sent: matthieu.schapira@utoronto.ca

Short Title: Diversity of the Epigenetics Pocketome

Keywords: epigenetics; chromatin factors; binding pocket; drug design; pocketome; inhibitor; selectivity; structure.

Abstract

Protein families involved in chromatin-templated events are emerging as novel target classes in oncology and other disease areas. The ability to discover selective inhibitors against chromatin factors depends on the presence of structural features that are unique to the targeted sites. To evaluate challenges and opportunities towards the development of selective inhibitors, we calculated all pair wise structural distances between 575 structures from the protein databank representing 163 unique binding pockets found in protein domains that write, read or erase post-translational modifications on histones, DNA and RNA. We find that the structural similarity of binding sites does not always follow the sequence similarity of protein domains. Our analysis reveals increased risks of activity across target-class for compounds competing with the cofactor of protein arginine methyltransferases, lysine acetyltransferases and sirtuins, while exploiting the conformational plasticity of a protein target is a path towards selective inhibition. The structural diversity landscape of the epigenetics pocketome can be explored via an openaccess graphic user interface at thesgc.org/epigenetics_pocketome.

INTRODUCTION

Epigenetic mechanisms control gene expression profile and cell fate in response to environmental and chemical cues. This complex regulation machinery relies mainly on the chemical modification of DNA and histone proteins at specific genomic loci ${ }^{1,2}$. RNA methylation is also emerging as a mechanism to regulate miRNA-mediated control of transcription ${ }^{3,4}$. These post-translational modifications are written, read and erased by catalytic and binding domains found in chromatin factors. Pharmacological targeting of these structural protein modules is an emerging therapeutic strategy in cancer and potentially other disease areas ${ }^{5}$: DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors are approved against myelodysplatic syndrome, leukemia and lymphoma ${ }^{6,7}$, while inhibitors of protein methyltransferases (PMT) and bromodomains binding modules that read acetylated lysines on histone tails - are in Phase II or III clinical trials ${ }^{8}$.

The development of potent and selective inhibitors of chromatin factors has become the focus of intense effort in the drug discovery community. Selective inhibition relies on the structural uniqueness of the targeted binding site. Appreciation of the structural diversity of a given binding pocket across an entire target class can reveal which are the most similar binding sites, and where are the main risks of off target activity.

We have analyzed the structural diversity of all currently known targetable binding pockets across twenty epigenetic target classes for which a structure is available. The resulting landscape of the epigenetic pocketome highlights differences between sequence similarity of protein domains and structural diversity of binding pockets, and reveals
unexpected variability in the structural diversity of cofactor binding sites from one target class to another. Gene-specific data is available to the community in an open access format through an online interface at thesgc.org/epigenetics_pocketome/.

MATERIALS AND METHODS

Database assembly

All structures of epigenetic target classes were retrieved from the Chromohub database ${ }^{9}$. A script in ICM (Molsoft LLC, San Diego) was used to automatically filter-out structures where the pocket was not occupied by chemical matter (substrate, inhibitor, molecule from the crystallization buffer): all structures were automatically aligned onto representative template structures with a bound ligand for each target class; target structures were kept only when a bound molecule was found within $1 \AA$ from the reference ligand.

Calculation of structural distances between pockets

The ICM atomic property field method was used to calculate structural distances between any two pockets ${ }^{10}$. Pockets are defined as the ensemble of atoms within $5.5 \AA$ of the bound ligand. Since the nature of the ligand has an impact on the definition of the pocket, ligands from the native structures were replaced with reference ligands that were unique to a target class or phylogenetic subfamily. These reference ligands were generally methylated or acetylated lysine or arginine. Two exceptions were bromodomains, where the benzodiazepine JQ1 was used as it better occupies the binding site, and KDMs, where
we found that an artificial ligand composed of a lysine flanked by 2 glycines better occupied the pocket.

Distance normalization

To make sure that relative structural distances $\left(\mathrm{D}_{\text {APF }}\right)$ could be compared within each target class, APF distances ($\mathrm{E}_{\mathrm{APF}}$) were normalized as previously described ${ }^{10}$:
$\mathrm{S}_{\mathrm{APF}}=-\tanh \left(\left(\mathrm{E}_{\mathrm{APF}}-\mathrm{E} 0\right) / \Delta 0\right)$, where $\mathrm{E} 0=-250 \& \Delta 0=100$
$\mathrm{D}_{\text {APF }}(\mathrm{A}, \mathrm{B})=\mathrm{S}_{\mathrm{APF}}(\mathrm{A}, \mathrm{A})+\mathrm{S}_{\mathrm{APF}}(\mathrm{B}, \mathrm{B})-2 \mathrm{~S}_{\mathrm{APF}}(\mathrm{A}, \mathrm{B})$

Graphic user interface

Phylogenetic tree generation and data mapping on the trees were carried-out using the technology previously described for Chromohub ${ }^{9}$.

RESULTS AND DISCUSSION

Structural Coverage

Current reversible inhibitors of chromatin factors are competing with either the cofactor-, the substrate- or the ligand-binding site of their targets ${ }^{5}$. We collected from the protein databank (PDB) the structures of binding pockets from human protein domains that write, read or erase methyl or acetyl marks on histones, DNA and RNA. To ensure that the analyzed pockets were not partially occluded by misfolded side-chains, we only kept pockets occupied by chemical matter (substrate, natural ligand such as methyl-lysine
(Kme), cofactor, inhibitor, or molecule from the crystallization buffer). When multiple structures were available for a given pocket, all were kept.

The resulting collection is composed of 575 structures representing 163 unique binding pockets (Figure 1 and Supplementary Table S1). Included are the Kme binding site of 48 Kme reader domains, the acetyl-lysine (Kac) binding site of 21 bromodomains, the cofactor (S-adenosylmethionine - SAM) binding site of 27 PMTs, 15 RNAmethyltransferases (RNMTs), and 2 DNMTs, the substrate lysine or arginine binding pocket of 11 PMTs and 10 lysine demethylases (KDMs), the cofactor (acetyl-CoA) and substrate (lysine) binding pocket of 8 and 2 lysine acetyltransferases (KATs) respectively, the substrate (Kac) binding site of 4 HDACs , and the cofactor (nicotinamide-adenine dinucleotide - NAD) site of 5 sirtuins (SIRTs). Compounds occupying allosteric sites of two PMTs have also been reported ${ }^{11}$ (PDB code 4QPP), and these pockets were also included (Supplementary Table S1, Figure 1).

Validation of computed structural distances

Structural distances between all binding pockets were calculated by the atomic property fields method implemented in ICM^{10}. Briefly, continuous pharmacophoric properties derived from atoms within $5.5 \AA$ of the bound ligand are compared between any two given binding pockets (see methods section for details). This method was applied in the past to successfully cluster in a blind experiment all ligand-binding pockets in the PDB^{10}.

To test the relevance of this approach, we measured structural distances between the Kac binding pockets of HDAC2 (a class I HDAC) as well as HDAC4 (a class IIa HDAC) with all other pockets in the database. Class IIa HDACs only have residual catalytic activity
due to the substitution of a catalytic tyrosine with a histidine, resulting in significant alteration in the structural chemistry of the binding site (Figure 2$)^{12,13}$. Indeed, we find that the substrate pocket of HDAC8, another class I HDAC, is significantly closer to HDAC2 (structural distance $\mathrm{SD}=0.18$) than class IIa HDACs ($\mathrm{SD}>0.7$) while the pocket of HDAC7, a class IIa enzyme, is closer to HDAC4 ($\mathrm{SD}=0.34$) than class I HDACs $(S D>0.88)$ (Figure 2).

The cofactor site of PMTs was used a second validation experiment. PMTs can be divided into two phylogenetic groups: SET domain methyltransferases, and Rossman fold methyltransferases. Both groups of enzymes use SAM as a methyl-donating cofactor. The bound conformation of SAM is conserved within each subfamily of PMT, but distinct between the two families, which implies greater structural diversity in the SAM pocket between the two groups ${ }^{14,15}$. Indeed, we find that structural distances from the cofactor binding pocket of the SET domain PMT EHMT2/G9a are less than 0.75 for all SET domain methyltransferases (with the exception of SMYD1: SD=0.86), while PRMTs, DOT1L and other Rossman fold methyltranserases have SD values greater than 1.5 (Figure 2): off-target effects of SAM competitors can be avoided between PRMTs and SET domain methyltransferases.

Sequence conservation does not always dictate pocket similarity

Chances of off-target activity of an inhibitor are expected to increase with binding domain sequence similarity. This trend can be observed for instance on the phylogenetic tree of bromodomains. Kac binding pockets found in the BET bromodomain phylogenetic subfamily (BRD2, BRD3, BRD4, and BRDT) are structurally close $(0.03<$
$\mathrm{SD}<0.25$) to the Kac binding pocket of BRD4(1) (first bromodomain of BRD4), while pockets found on non-BET bromodomains are more distant ($0.5>\mathrm{SD}>1.89$) (Figure 3). This is in agreement with the observation that current BRD4 bromodomain inhibitors, some in the clinic, are poorly selective within the BET family ${ }^{16}$.

An exception is the Kac binding pocket of CREBBP which is relatively close to the Kac pocket of $\operatorname{BRD} 4(1)$ ($\mathrm{SD}=0.24$), while the CREBBP bromodomain is not a close phylogenetic neighbour of BRD4(1) (31% sequence identity between the two bromodomains). Superimposing the structures of the BRD4(1) and CREBBP Kac binding pockets highlights a high structural similarity, the only significant difference being substitution of C136 in BRD4 for A1164 in CREBBP (Figure 3). This exception indicates that phylogenetic proximity does not necessarily correlate with binding pocket similarity. Further supporting this notion, we observe that while BPTF is closer to BRD4(1) than CREBBP in sequence (37% sequence identity between the bromodomains of BRD4(1) and BPTF), its binding pocket is more distant ($\mathrm{SD}=0.97$ between Kac binding pockets of BRD4(1) and BPTF) (Figure 3). Superimposing the BRD4(1) and BPTF structures highlights numerous important differences, including substitution of L92 in BRD4 with D101 in BPTF. Interestingly, we note that the only cross-activity observed for the BET bromodomain (i.e. BRD2, BRD3, BRD4, BRDT) inhibitor PFI-1 is with CREBBP/EP300 (thermal stabilization of $2-3{ }^{\circ} \mathrm{C}$ at $\left.10 \mu \mathrm{M}\right)^{17}$, and the only cross-activity observed for CREBBP/EP300 bromodomain inhibitors is with BET bromodomains (thermal stabilization of $2-3{ }^{\circ} \mathrm{C}$ at $\left.10 \mu \mathrm{M}\right)^{18}$. This supports the notion that APF structural distances correlate with experimental selectivity profiles.

Together, these results show that sequence conservation generally but not always correlates with binding pocket similarity and off-target liability.

The SAM binding pocket is conserved in PRMTs and variable in RNMTs

PMT inhibitors currently in clinical trial (namely EZH2 and DOT1L inhibitors) are all competing with the cofactor SAM 8, and efforts are ongoing to target the cofactor binding pocket of other PMTs and other epigenetic target classes such as DNMTs or RNMTs. While the structural diversity of the SAM binding pocket was sufficient to develop highly specific EZH2 and DOT1L cofactor competitors, the chemical tractability of the cofactor site of other targets is unclear.

To evaluate the chances of designing specific cofactor competitors, we measured the structural diversity of the cofactor site of PMTs, RNMTs and DNMTs, which all use SAM as a cofactor (Figure 4). We find that as a group, PMTs, RNMTs and DNMTs have very variable SAM binding sites (median structural distance for the 903 pairs of SAM binding sites where structures are available: 2.7). This indicates that, while SAM binds to all these pockets, they are structurally divergent, and compounds that are not close mimetics of SAM have low chances of acting as pan-inhibitors. The fact that potent SAM-competing EZH2 or DOT1L inhibitors are inactive against other PMTs supports this result ${ }^{19-21}$.

We find that the structural diversity is still high when considering PMTs only (median SD: 1.9). When focusing exclusively on SET domain PMTs, or exclusively on Rossmanfold PMTs, the median SD is lower, but still greater than 0.5 , which indicates sufficient diversity to develop selective inhibitors. On the other hand, the median SD value
between the SAM binding sites of PRMTs drops below 0.05 , indicating very high structural similarity (Figure 4). For instance, structural distances from the SAM site of CARM1 are below or equal to 0.01 for PRMT1, PRMT3 and PRMT6, and 0.1 for PRMT5 (Figure 5). Superimposing the SAM pockets of CARM1 and PRMT3 confirm a high structural similarity (Figure 5). Similarly, we find close similarity between the cofactor sites of DNMT1 and DNMT3A (SD=0.09).

The SAM binding site of RNMTs is much more diverse, as indicated by a median SD of 1.0 among the 91 pairs of genes with structures in the PDB (Figure 4). Superimposing the structures of MEPCE and METTL1, which are both on the same phylogenetic branch of the RNMT tree but separated by a structural distance of 0.31 , clearly reveals extensive structural differences between the two SAM binding sites (Figure 5).

We therefore find little variation in the SAM binding pocket of PRMTs, and much greater diversity in RNMTs and SET domain PMTs. This indicates that finding selective SAM competitors will be more challenging for PRMTs than it has been for EZH2, and supports systematic screening of PRMT lead candidates against the entire target class to avoid unanticipated off-target effects.

Low structural variability at the cofactor pocket of SIRTs and KATs

Sirtuins - which have deacetylase activity - and acetyltransferases, two other target classes involved in epigenetic mechanisms, also rely on the recruitment of a cofactor, NAD and acetyl-coA respectively, at dedicated binding pockets. To evaluate the chances of developing selective cofactor competitors of SIRTs and KATs, we measured for each
of these protein family the structural distances separating all cofactor binding sites present in the PDB.

We find that both binding sites are very conserved (Figure 4). This is especially the case for the NAD pocket of SIRTs, where all pair wise structural distances are lower than 0.01 , as illustrated by the superimposition of the SIRT1 and SIRT6 cofactor binding sites (Figure 4, Figure 6A). The acetyl-CoA pocket of KATs is also highly conserved (median SD across 36 pair wise distances <0.1), and the only pocket that is significantly different is the cofactor binding site of EP300. All structural distances from the acetyl-coA site of HAT1 are lower than 0.05 , except EP300 ($\mathrm{SD}=1.19$). Conversely, all structural distances from the cofactor site of EP300 are greater than 0.35 (Figure 6 B,C). Overlaying structures clearly shows high structural similarity between the cofactor sites of HAT1 and KAT5, which are distant on the phylogenetic tree, but high structural divergence between the cofactor sites of EP300 and ATAT1, which are close on the phylogenetic tree (Figure 5B,C).

Together, these results indicate that developing selective NAD and acetyl-CoA competitors against SIRTs and KATs respectively is a challenging enterprise, with the exception of EP300, which has a distinct acetyl-CoA binding pocket.

Conformational dynamics can increase structural diversity

The structural plasticity of a binding pocket can sometimes be exploited to develop selective inhibitors: if a binding site can be remodeled in a conformation that is distinct from its substrate- or cofactor-bound state, compounds that occupy this altered state
should have less chances of binding the substrate or cofactor pocket of phylogenetic neighbours.

For instance, an activation loop is folding on the cofactor in the catalytically active state of the PMT DOT1L, but undergoes a dramatic conformational rearrangement upon binding of potent, selective DOT1L inhibitors. The compounds exploit the remodeled cofactor site, compete with the cofactor, and lock the enzyme in a catalytically inactive state ${ }^{22,23}$. The structural uniqueness of the remodeled DOT1L cofactor site translates in greater structural distances from the SAM binding pockets of other methyltransferases: while SAM-bound DOT1L has a structure that is relatively close to the cofactor site of the RNMT TGS1 ($\mathrm{SD}=0.08$) (Figure 7A), the closest pocket from the remodeled cofactor site of DOT1L is the RNMT1 MEPCE, with a high SD of 0.43 . Superimposing DOT1L and TGS1 structures confirms lower similarity with the remodeled conformation of DOT1L (Figure 7A,B).

We find that the pockets most similar to the cofactor site of DOT1L are equally found among RNMTs and PRMTs, but are not present in SET domain PMTs (Figure 7). This should come as no surprise, since DOT1L, PRMTs and RNMTs are all Rossman-fold methyltransferases, while SET domain PMTs are not. Intriguingly, the second closest pocket to the SAM site of DOT1L is the cofactor pocket of PRMT5. Although weak, this relative structural proximity is in agreement with the observed selectivity profile of the picomolar inhibitor of DOT1L EPZ004777, which was tested against 10 PMTs and had cross-reactivity only against PRMT5 ${ }^{21}$. We also note that, as in the DOT1L structure, a flexible loop located next to the Rossman fold of PRMT5 is folding on the cofactor, suggesting that structural remodeling can also take place at the SAM pocket of PRMT5 ${ }^{24}$.

Structural plasticity is not unique to the cofactor site of DOT1L. Conformational dynamics at the post-SET secondary element of SET domain PMTs, and at the α-helix of PRMTs results in significant remodeling of both cofactor- and substrate-binding sites, and may translate in opportunities for the development of selective inhibitors ${ }^{25,26}$.

As future structures better delineate the structural plasticity of the epigenetic pocketome, novel design strategies will surface for the development of potent and selective inhibitors.

Pocket similarity rationalizes epigenetic mark recognition

Recognition of specific post-translational modifications on histone side-chains by dedicated reader domains is central to the interpretation of the histone code ${ }^{27}$. Methylation of lysine and arginine residues are among the most common histone marks, and are read by a limited set of structural modules, including Tudor domains ${ }^{28,29}$. Aromatic cages composed of two to four aromatic side-chains positioned in an orthogonal arrangement act as sensors of methylated lysines and arginines (Rme) ${ }^{28,30}$. While aromatic cages found on PHD fingers, MBT, Chromo or PWWP domains are binding Kme, aromatic cages found on Tudor domains bind either Kme or Rme ${ }^{31}$, and the structural basis for histone mark specificity is not clearly understood.

We find that all pockets closest to the aromatic cage of SMNDC1, a Rme binding site, are also Rme-binding aromatic cages found in Tudor domains, suggesting that well-defined structural features are underlying selective recognition of methylated arginines (Figure 8A). Comparison of Tudor-domain aromatic cages sensing Kme and Rme side-chains shows that the latter are systematically composed of four aromatic side-chains, two of which are positioned in a parallel orientation. Quite similar arrangements are found in
some of the Kme binding pockets, such as the TP53BP1 aromatic cage (which is why these Kme binding sites are almost as close to SMNDC1 as Rme binding pockets), but a distinctive feature of methyl-lysine binding pockets is that the two facing aromatic sidechains are in close proximity $(<7.7 \AA$ between the center of the aromatic rings in all cases). This results in efficient stacking of the guanidinium group, sandwiched between the two facing aromatic rings. The distance is systematically larger (> $8.9 \AA$) in methyllysine binding pockets, a necessity to accommodate a bulky methyl-ammonium group (Figure 8A).

These observations suggest that the structural diversity landscape of the epigenetics pocketome drawn in this work can provide some indications on the substrates recognized by reader domains.

In this regard, we find that the closest pocket to the Kme3-binding aromatic cage of the UHRF1 Tudor domain is the first MBT domain of L3MBTL (figure 8B). L3MBTL has three MBT domains; the second domain is known to act as Kme binding site, but no binding activity was reported for the first domain ${ }^{32}$. Superimposing the two structures confirms a very high similarity between the UHRF1 and L3MBTL binding sites (Figure $8 B$). It would be interesting to test biochemically whether the first MBT domain of L3MBTL can indeed bind Kme.

CONCLUSIONS

The structural diversity landscape of the epigenetic pocketome drawn here provides structural similarities between binding sites rather than sequence similarities between
protein domain sequences. This increased level of resolution is valuable to medicinal chemists and biochemists that design, test and profile chemical compounds targeting chromatin factors. This work reveals that cofactor sites of SET domain-PMTs and RNMTs are more diverse than those of PRMTs, KATs and sirtuins: compounds targeting the latter should be systematically profiled against the entire target class to identify probable off-target activity. Exploiting the structural plasticity of binding pockets (observed in numerous chromatin factors) can significantly increase the selectivity profile of inhibitors. Selective allosteric inhibition of an epigenetic target, PRMT3, was also reported and it will be interesting to see novel inhibitory mechanisms emerge in the future ${ }^{11}$. Finally, an online graphic user interface brings all the data generated in this work and future updates to the epigenetics community at thesgc.org/epigenetics_pocketome.

ACKNOWLEDGEMENTS

The SGC is a registered charity (no. 1097737) that receives funds from AbbVie, Bayer, Boehringer Ingelheim, Genome Canada through Ontario Genomics Institute Grant OGI055, GlaxoSmithKline, Janssen, Lilly Canada, Merck, the Novartis Research Foundation, the Ontario Ministry of Economic Development and Innovation, Pfizer, Takeda, and Wellcome Trust Grant 092809/Z/10/Z. The authors declare no conflict of interest.

SUPPLEMENTARY INFORMATION

Supplementary Table S1, providing a list of the binding pockets and PDB structures used in this work, can be found in the online version of this article

REFERENCES

1. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012;13(7):484-492.
2. Kouzarides T. Chromatin modifications and their function. Cell 2007;128(4):693-705.
3. Xhemalce B, Robson SC, Kouzarides T. Human RNA methyltransferase BCDIN3D regulates microRNA processing. Cell 2012;151(2):278-288.
4. Nilsen TW. Molecular biology. Internal mRNA methylation finally finds functions. Science 2014;343(6176):1207-1208.
5. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 2012;11(5):384-400.
6. Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 2008;123(1):8-13.
7. Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 2007;25(1):84-90.
8. Copeland RA. Molecular pathways: protein methyltransferases in cancer. Clin Cancer Res 2013;19(23):6344-6350.
9. Liu L, Zhen XT, Denton E, Marsden BD, Schapira M. ChromoHub: a data hub for navigators of chromatin-mediated signalling. Bioinformatics 2012;28(16):2205-2206.
10. Totrov M. Ligand binding site superposition and comparison based on Atomic Property Fields: identification of distant homologues, convergent evolution and PDB-wide clustering of binding sites. BMC Bioinformatics 2011;12 Suppl 1:S35.
11. Siarheyeva A, Senisterra G, Allali-Hassani A, Dong A, Dobrovetsky E, Wasney GA, Chau I, Marcellus R, Hajian T, Liu F, Korboukh I, Smil D, Bolshan Y, Min J, Wu H, Zeng H, Loppnau P, Poda G, Griffin C, Aman A, Brown PJ, Jin J, Al-Awar R, Arrowsmith CH, Schapira M, Vedadi M. An allosteric inhibitor of protein arginine methyltransferase 3. Structure 2012;20(8):1425-1435.
12. Schapira M. Structural biology of human metal-dependent histone deacetylases. Handb Exp Pharmacol 2011;206:225-240.
13. Schuetz A, Min J, Allali-Hassani A, Schapira M, Shuen M, Loppnau P, Mazitschek R, Kwiatkowski NP, Lewis TA, Maglathin RL, McLean TH, Bochkarev A, Plotnikov AN, Vedadi M, Arrowsmith CH. Human HDAC7
harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J Biol Chem 2008;283(17):11355-11363.
14. Campagna-Slater V, Mok MW, Nguyen KT, Feher M, Najmanovich R, Schapira M. Structural chemistry of the histone methyltransferases cofactor binding site. J Chem Inf Model 2011;51(3):612-623.
15. Copeland RA, Solomon ME, Richon VM. Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Discov 2009;8(9):724-732.
16. Filippakopoulos P, Knapp S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov 2014;13(5):337-356.
17. Picaud S, Da Costa D, Thanasopoulou A, Filippakopoulos P, Fish PV, Philpott M, Fedorov O, Brennan P, Bunnage ME, Owen DR, Bradner JE, Taniere P, O'Sullivan B, Muller S, Schwaller J, Stankovic T, Knapp S. PFI-1, a highly selective protein interaction inhibitor, targeting BET Bromodomains. Cancer research 2013;73(11):3336-3346.
18. Hay DA, Fedorov O, Martin S, Singleton DC, Tallant C, Wells C, Picaud S, Philpott M, Monteiro OP, Rogers CM, Conway SJ, Rooney TP, Tumber A, Yapp C, Filippakopoulos P, Bunnage ME, Muller S, Knapp S, Schofield CJ, Brennan PE. Discovery and optimization of small-molecule ligands for the CBP/p300 bromodomains. J Am Chem Soc 2014;136(26):9308-9319.
19. McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, Liu Y, Graves AP, Della Pietra A, 3rd, Diaz E, LaFrance LV, Mellinger M, Duquenne C, Tian X, Kruger RG, McHugh CF, Brandt M, Miller WH, Dhanak D, Verma SK, Tummino PJ, Creasy CL. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 2012;492(7427):108112.
20. Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR, Sacks JD, Raimondi A, Majer CR, Song J, Scott MP, Jin L, Smith JJ, Olhava EJ, Chesworth R, Moyer MP, Richon VM, Copeland RA, Keilhack H, Pollock RM, Kuntz KW. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nature chemical biology 2012;8(11):890-896.
21. Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J, Johnston LD, Scott MP, Smith JJ, Xiao Y, Jin L, Kuntz KW, Chesworth R, Moyer MP, Bernt KM, Tseng JC, Kung AL, Armstrong SA, Copeland RA, Richon VM, Pollock RM. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 2011;20(1):53-65.
22. Yu W, Chory EJ, Wernimont AK, Tempel W, Scopton A, Federation A, Marineau JJ, Qi J, Barsyte-Lovejoy D, Yi J, Marcellus R, Iacob RE, Engen JR, Griffin C, Aman A, Wienholds E, Li F, Pineda J, Estiu G, Shatseva T, Hajian T, Al-Awar R, Dick JE, Vedadi M, Brown PJ, Arrowsmith CH, Bradner JE, Schapira M. Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. Nat Commun 2012;3:1288.
23. Basavapathruni A, Jin L, Daigle SR, Majer CR, Therkelsen CA, Wigle TJ, Kuntz KW, Chesworth R, Pollock RM, Scott MP, Moyer MP, Richon VM, Copeland RA, Olhava EJ. Conformational adaptation drives potent, selective and durable inhibition of the human protein methyltransferase DOT1L. Chem Biol Drug Des 2012;80(6):971-980.
24. Antonysamy S, Bonday Z, Campbell RM, Doyle B, Druzina Z, Gheyi T, Han B, Jungheim LN, Qian Y, Rauch C, Russell M, Sauder JM, Wasserman SR, Weichert K, Willard FS, Zhang A, Emtage S. Crystal structure of the human PRMT5:MEP50 complex. Proceedings of the National Academy of Sciences of the United States of America 2012;109(44):17960-17965.
25. Schapira M, Ferreira de Freitas R. Structural biology and chemistry of protein arginine methyltransferases. Med Chem Commun 2014;5:1779-1788.
26. Schapira M. Structural Chemistry of Human SET Domain Protein Methyltransferases. Curr Chem Genomics 2012;5(Suppl 1):85-94.
27. Fischle W, Wang Y, Allis CD. Binary switches and modification cassettes in histone biology and beyond. Nature 2003;425(6957):475-479.
28. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 2007;14(11):1025-1040.
29. James LI, Frye SV. Targeting chromatin readers. Clin Pharmacol Ther 2013;93(4):312-314.
30. Gao C, Herold JM, Kireev D, Wigle T, Norris JL, Frye S. Biophysical probes reveal a "compromise" nature of the methyl-lysine binding pocket in L3MBTL1. J Am Chem Soc 2011;133(14):5357-5362.
31. Lu R, Wang GG. Tudor: a versatile family of histone methylation 'readers'. Trends Biochem Sci 2013;38(11):546-555.
32. Min J, Allali-Hassani A, Nady N, Qi C, Ouyang H, Liu Y, MacKenzie F, Vedadi M, Arrowsmith CH. L3MBTL1 recognition of mono- and dimethylated histones. Nat Struct Mol Biol 2007;14(12):1229-1230.

FIGURE LEGENDS:

Figure 1: Structural coverage of the epigenetics pocketome. The ensemble of structures collected in the PDB covers 163 binding pockets (highlighted in red) across 18 classes of protein domains that write, read and erase post-translational modifications on histones, DNA and RNA.

Figure 2: Structural distances accurately distinguish Class I from Class II HDACs, as well as SET-domain from Rossman fold SAM pockets. Structural distances from the Kac binding pocket of HDAC2 (top left), and HDAC4 (top right) are mapped on a phylogenetic tree of the HDAC family. Structural distances from the cofactor binding pocket of EHMT2/G9a are mapped on the phylogenetic trees of SET-domain and Rossman-fold PMTs (bottom). Structural differences between the Kac binding pockets of Class I and Class II HDACs are shown (PDB codes are HDAC2: 4LXZ, HDAC4:2VQM, HDAC7:3C0Z, HDAC8:1T69).

Figure 3: Pockets from phylogenetically distant isoforms are not necessarily the most distant structurally. Structural distances from the Kac binding pocket of BRD4's first bromodomain are mapped on a phylogenetic tree. Structural differences between the Kac site of BRD4(1) and CREBBP (left) or BPTF (right) are highlighted. When multiple bromodomains are present in a protein, the bromodomain number is indicated in parenthesis.

Figure 4: Structural diversity landscape of cofactor binding pockets. The distribution of minimum pair wise distances separating all pockets with holo-structures in the PDB is shown as boxplots for cofactor binding sites of epigenetic target classes. An estimate of
the minimum distance necessary to develop selective inhibitors is indicated with a dashed horizontal bar. When several structure of the same pocket are present in the PDB, all distances are calculated and only the minimum distance is used. The number of minimum distances is indicated in parenthesis.

Figure 5: The structural diversity of the SAM binding site varies from one target class to another. (A) Structural distances from the SAM binding pocket of CARM1 are mapped on a phylogenetic tree of Rossman fold PMTs (top); the few structural differences between the SAM pockets of CARM1 (PDB: 4IKP) and PRMT3 (PDB: 2FYT) are shown (bottom). (B) Structural distances from the SAM binding pocket of the RNMT MEPCE are mapped on a phylogenetic tree of RNMTs (top); the large structural differences between the SAM pockets of MEPCE (PDB: 3G07) and METTL1 (PDB: 3CKK) are shown (bottom).

Figure 6: Low structural diversity at the cofactor site of SIRTs and KATs. (A) Structural distances from the NAD binding pocket of SIRT1 are mapped on a phylogenetic tree of human SIRTs (top); the few structural differences between the NAD pockets of phylogenetically distant SIRT1 and SIRT6 are shown (bottom). (B) Structural distances from the acetyl-CoA binding pocket of HAT1 are mapped on a phylogenetic tree of KATs (top); the few structural differences between the acetyl-CoA pockets of HAT1 (PDB: 2POW) and KAT5 (PDB: 2OU2) are shown (bottom). (C) Structural distances from the acetyl-CoA binding pocket of EP300 are mapped on a phylogenetic tree of KATs (top); the numerous structural differences between the acetyl-CoA pockets of EP300 (PDB: 4PZR) and ATAT1 (PDB: 4GS4) are shown (bottom).

Figure 7: Altered pocket conformation increases structural diversity. (A) Structural distances of SAM binding sites from the cofactor pocket of DOT1L bound to SAM are listed (left) and outlined on phylogenetic trees (right). The structural similarity between the cofactor-bound pockets of DOT1L (PDB: 1NW3) and TGS1 (PDB: 3GDH) is detailed. (B) Structural distances of SAM binding sites from the remodeled conformation of the DOT1L cofactor site in complex with the selective inhibitor EPZ004777 (PDB: 4ER5). Table and figures as above.

Figure 8: Pocket similarity correlates with histone mark recognition. (A-left): Kme and Rme binding pockets from Tudor domains are listed along their structural distances to the Rme binding site of SMNDC1. (A-right): Structure of aromatic cages from Tudor domains in complex with Rme and Kme. PDB codes: SMN1 [4A4E], SND1[3OMC], TDRD3[3PMT], UHRF1[4GY5], TP53BP1[3LGL], MSL3L1[3OA6]. (B-left): pockets structurally closest to the Kme binding pocket of the UHRF1 Tudor domain. (B-right): structures from the aromatic cages of the UHRF1 Tudor domain [4GY5] and the first MBT domain of L3MBTL [1OZ3] are overlaid.

Supplementary Table S1: The Epigenetics pocketome. Table S1A: 163 unique binding pockets included in this work. Table S1B: 575 PDB structures used in this work.

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

A
Pockets within 0.75 SD of the SAM binding pocket of active DOT1L

Gene	PDB	Distance	Substrate
DOT1L	1NW3	0	Protein
TGS1	3GDH	0.08	RNA
PRMT5	4GQB	0.23	Protein
CARM1	2 Y1X	0.25	Protein
FTSJ2	2NYU	0.29	RNA
PRMT3	2 FYT	0.31	Protein
PRMT1	1OR8	0.34	Protein
MEPCE	3CKK	0.39	RNA
DNMT1	3SWR	0.39	DNA
NSUN4	4FP9	0.4	RNA
DNMT3A	2QRV	0.42	DNA
DIMT1	1ZQ9	0.55	RNA
TRDMT1	1G55	0.57	RNA
NSUN5	2B9E	0.58	RNA
FBL	$2 I P X$	0.61	RNA
METTL21C	4MTL	0.64	Protein
PRMT6	4HC4	0.72	Protein

B
Pockets within 0.75 SD of the SAM binding pocket of inactive DOT1L

Gene	PDB	Distance	Substrate
DOT1L	4ER7	0	Protein
MEPCE	3G07	0.43	RNA
PRMT5	4GQB	0.44	Protein
TGS1	3GDH	0.55	RNA
METTL1	3CKK	0.62	RNA
PRMT1	1ORH	0.67	Protein
FTSJ2	2NYU	0.73	RNA
CARM1	2Y1X	0.74	Protein

EPZ004777
TGS1-specific
DOT1L/TGS1
conserved
DOT1L-specific

A
Pockets closest to the Rme2 binding site of SMNDC1 Tudor

Gene	PDB	Distance	Ligand
SMNDC1	4A4H	0	Rme2a
SMN1	4A4E	0.33	Rme2s
SND1	3OMG	1.41	Rme2s
TDRD3	2LT0	1.75	Rme2a
UHRF1	3DB3	1.78	Kme3
TP53BP1	2LVM	1.84	Kme2
CCDC101	3MEA	2.18	Kme3
PHF1	2M00	2.29	Kme3
JMJD2A	2GFA	2.3	Kme3
MSL3L1	3OA6	2.38	Kme
PHF19	4BD3	2.42	Kme3

FIGURE 7

family	gene	domain
1 ANKYRIN	EHMT1	1
2 BAH	DNMT1	1
3 BROMO	ATAD2	1
4 BROMO	BAZ2A	1
5 BROMO	BAZ2B	1
6 BROMO	BPTF	1
7 BROMO	BRD2	1
8 BROMO	BRD2	2
9 BROMO	BRD3	1
10 BROMO	BRD3	2
11 BROMO	BRD4	1
12 BROMO	BRD4	2
13 BROMO	BRD9	1
14 BROMO	BRDT	1
15 BROMO	BRPF1	1
16 BROMO	CREBBP	1
17 BROMO	KAT2B	1
18 BROMO	PBRM1	2
19 BROMO	PBRM1	5
20 BROMO	PHIP	2
21 BROMO	SMARCA4	1
22 BROMO	TRIM24	1
23 BROMO	TRIM33	1
24 CHROMO	CBX1	1
25 CHROMO	CBX2	1
26 CHROMO	CBX3	1
27 CHROMO	CBX5	1
28 CHROMO	CBX6	1
29 CHROMO	CBX7	1
30 CHROMO	CBX8	1
31 CHROMO	CHD1	1
32 CHROMO	MPHOSPH8	1
33 DNMTCof	DNMT1	1
34 DNMTCof	DNMT3A	1
35 HDAC	HDAC2	1
36 HDAC	HDAC4	1
37 HDAC	HDAC7	1
38 HDAC	HDAC8	1
39 KAT	ATA1	1
40 KAT	ATAT1	1
41 KAT	EP300	1
42 KAT	HAT1	1
43 KAT	KAT2A	1
44 KAT	KAT2B	1
45 KAT	KAT5	1
46 KAT	MYST1	1
47 KAT	MYST3	1
48 KATSubs	ATA1	1

49 KATSubs	EP300	1
50 KDM	JHDM1D	1
51 KDM	KDM2A	1
52 KDM	KDM4A	1
53 KDM	KDM4D	1
54 KDM	KDM4DL	1
55 KDM	KDM6A	1
56 KDM	KDM6B	1
57 KDM	NO66	1
58 KDM	PHF8	1
59 KDM	UTY	1
60 MBT	L3MBTL	1
61 MBT	L3MBTL	2
62 MBT	L3MBTL2	4
63 MBT	L3MBTL3	1
64 MBT	L3MBTL	3
65 MBT	L3MBTL3	2
66 MBT	SCML2	2
67 PHD	BAZ2A	1
68 PHD	BPTF	2
69 PHD	DIDO1	1
70 PHD	ING1	1
71 PHD	ING2	1
72 PHD	ING4	1
73 PHD	ING5	1
74 PHD	KDM5A	3
75 PHD	MLL	3
76 PHD	MLL5	1
77 PHD	PHF13	1
78 PHD	PHF2	1
79 PHD	PHF8	1
80 PHD	PYGO1	1
81 PHD	PYGO2	1
82 PHD	RAG2	1
83 PHD	TAF3	1
84 PHD	UHRF1	1
85 PMTAllo	PRMT3	1
86 PMTAllo	PRMT6	1
87 PMT	CARM1	1
88 PMTCof	ASH1L	1
89 PMTCof	CAMKMT	1
90 PMTCof	CARM1	1
91 PMTCof	DOT1L	1
92 PMTCof	EHMT1	1
93 PMTCof	EHMT2	1
94 PMTCof	METTL21A	1
95 PMTCof	METTL21C	1
96 PMTCof	METTL21D	1
97 PMTCof	MLL	1

98 PMTCof	NSD1	1
99 PMTCof	PRMT1	1
100 PMTCof	PRMT3	1
101 PMTCof	PRMT5	1
102 PMTCof	PRMT6	1
103 PMTCof	SETD2	1
104 PMTCof	SETD3	1
105 PMTCof	SETD6	1
106 PMTCof	SETD7	1
107 PMTCof	SETD8	1
108 PMTCof	SETMAR	1
109 PMTCof	SMYD1	1
110 PMTCof	SMYD2	1
111 PMTCof	SMYD3	1
112 PMTCof	SUV39H2	1
113 PMTCof	SUV420H1	1
114 PMTCof	SUV420H2	1
115 PMT	EHMT1	1
116 PMT	EHMT2	1
117 PMT	MLL	1
118 PMT	PRMT5	1
119 PMT	SETD2	1
120 PMT	SETD6	1
121 PMT	SETD7	1
122 PMT	SETD8	1
123 PMT	SMYD2	1
124 PMT	SUV420H2	1
125 PWWP	BRPF1	1
126 PWWP	HDGFRP2	1
127 PWWP	ZMYND11	1
128 RNMTCof	CMTR1	1
129 RNMTCof	DIMT1	1
130 RNMTCof	FBL	1
131 RNMTCof	FTSJ2	1
132 RNMTCof	MEPCE	1
133 RNMTCof	METTL1	1
134 RNMTCof	NSUN4	1
135 RNMTCof	NSUN5	1
136 RNMTCof	RNMT	1
137 RNMTCof	TARBP1	1
138 RNMTCof	TGS1	1
139 RNMTCof	TRDMT1	1
140 RNMTCof	TRMT10A	1
141 RNMTCof	TRMT61B	1
142 RNMT	TGS1	1
143 SIRT	SIRT1	1
144 SIRT	SIRT2	1
145 SIRT	SIRT3	1
146 SIRT	SIRT5	1

147 SIRT SIRT6 1
148 SIRTSubs SIRT2 1
149 SPINDLIN SPIN1 1
150 SPINDLIN SPIN1 2
151 SPINDLIN SPIN4 1
152 TUDOR CCDC101 2
153 TUDOR JMJD2A 1
154 TUDOR MSL3L1 1
155 TUDOR PHF1 1
156 TUDOR PHF19 1
157 TUDOR SMN1 1
158 TUDOR SMNDC1 1
159 TUDOR SND1 1
160 TUDOR TDRD3 1
161 TUDOR TP53BP1 1
162 TUDOR UHRF1 1
163 YEATS MLLT3 1

family	gene	domain	pdb	ligand
1 ANKYRIN	EHMT1		$13 \mathrm{B95}$	Kme2
2 BAH	DNMT1		13 SWR	Kme2
3 BROMO	ATAD2		1 4QSP	Kac
4 BROMO	ATAD2		1 4QST	12q
5 BROMO	ATAD2		1 4QSV	thm
6 BROMO	ATAD2		1 4QSW	38t
7 BROMO	ATAD2		1 4QSX	38s
8 BROMO	ATAD2		1 4QUT	Kac
9 BROMO	ATAD2		1 4QUU	Kac
10 BROMO	ATAD2		1 4TYL	390
11 BROMO	ATAD2		1 4TZ2	39 r
12 BROMO	ATAD2		1 4TZ8	39u
13 BROMO	BAZ2A		1 4QBM	Kac
14 BROMO	BAZ2B		13 Q 2 F	oam
15 BROMO	BAZ2B		1 4IR3	1 fk
16 BROMO	BAZ2B		1 4IR5	ir5
17 BROMO	BAZ2B		1 4IR6	ir6
18 BROMO	BAZ2B		1 4NR9	Kac
19 BROMO	BAZ2B		1 4NRA	21w
20 BROMO	BAZ2B		1 4NRB	21 x
21 BROMO	BAZ2B		1 4NRC	21 y
22 BROMO	BAZ2B		$14 \mathrm{QC1}$	Kac
23 BROMO	BAZ2B		1 4QC3	Kac
24 BROMO	BPTF		1 3QZS	Kac
25 BROMO	BPTF		1 3QZT	Kac
26 BROMO	BPTF		13 QZV	Kac
27 BROMO	BRD2		12 DVQ	Kac
28 BROMO	BRD2		1 2DVR	Kac
29 BROMO	BRD2		1 2DVS	Kac
30 BROMO	BRD2		1 2YDW	wsh
31 BROMO	BRD2		1 2YEK	eam
32 BROMO	BRD2		1 3AQA	byh
33 BROMO	BRD2		1 4A9E	3pf
34 BROMO	BRD2		1 4A9F	mb3
35 BROMO	BRD2		14 A 9 H	tvp
36 BROMO	BRD2		1 4A9I	p9i
37 BROMO	BRD2		1 4A9J	tyl
38 BROMO	BRD2		1 4A9M	p9m
39 BROMO	BRD2		1 4A9N	a9n
40 BROMO	BRD2		14 A 90	a9o
41 BROMO	BRD2		1 4A9P	a9p
42 BROMO	BRD2		1 4AKN	s5b
43 BROMO	BRD2		1 4ALG	1gh
44 BROMO	BRD2		1 4ALH	a9p
45 BROMO	BRD2		1 4UYF	73b
46 BROMO	BRD2		1 4UYH	9 s 3
47 BROMO	BRD2		2 2DVV	epe
48 BROMO	BRD2		2 3ONI	jq1

49 BROMO	BRD2	2 4J1P	1k0
50 BROMO	BRD2	2 4MR5	1k0
51 BROMO	BRD2	2 4MR6	1k0
52 BROMO	BRD2	2 4UYG	73b
53 BROMO	BRD3	1 2L5E	Kac
54 BROMO	BRD3	13 S 91	jq1
55 BROMO	BRD3	23 S 92	jq1
56 BROMO	BRD4	1 2YEL	wsh
57 BROMO	BRD4	13 JVK	Kac
58 BROMO	BRD4	1 3MXF	jq1
59 BROMO	BRD4	13 P 50	eam
60 BROMO	BRD4	1 3SVF	wdr
61 BROMO	BRD4	1 3SVG	odr
62 BROMO	BRD4	1 3U5J	08h
63 BROMO	BRD4	1 3U5K	08j
64 BROMO	BRD4	1 3U5L	08k
65 BROMO	BRD4	13 UVW	Kac
66 BROMO	BRD4	1 3UVX	Kac
67 BROMO	BRD4	1 3UVY	Kac
68 BROMO	BRD4	1 3UW9	Kac
69 BROMO	BRD4	13 ZYU	1gh
70 BROMO	BRD4	1 4A9L	p91
71 BROMO	BRD4	14 BJX	73b
72 BROMO	BRD4	14 BW 1	s5b
73 BROMO	BRD4	1 4BW2	uth
74 BROMO	BRD4	1 4BW3	9bm
75 BROMO	BRD4	1 4BW4	9 b 6
76 BROMO	BRD4	14 C 66	h4c
77 BROMO	BRD4	$14 \mathrm{C67}$	15s
78 BROMO	BRD4	1 4CFK	ly2
79 BROMO	BRD4	14 CFL	8dq
80 BROMO	BRD4	1 4DON	3 pf
81 BROMO	BRD4	$14.00 \mathrm{E}+96$	Ons
82 BROMO	BRD4	14 F 3 I	0s6
83 BROMO	BRD4	1 4GPJ	0q1
84 BROMO	BRD4	14 HBV	15 e
85 BROMO	BRD4	14 HBW	$14 z$
86 BROMO	BRD4	14 HBX	14 x
87 BROMO	BRD4	14 HBY	13 f
88 BROMO	BRD4	14 HXK	1 aj
89 BROMO	BRD4	14 HXL	1 a 9
90 BROMO	BRD4	14 HXM	1 a 8
91 BROMO	BRD4	14 HXN	1 a 7
92 BROMO	BRD4	14 HXO	1 a 6
93 BROMO	BRD4	14 HXP	1 a 5
94 BROMO	BRD4	14 HXR	1a4
95 BROMO	BRD4	1 4HXS	1 a 3
96 BROMO	BRD4	1 4IOQ	baq
97 BROMO	BRD4	14 JOR	1h2

98 BROMO	BRD4	14 JOS	1h3
99 BROMO	BRD4	14 J 3 I	1k0
100 BROMO	BRD4	14 KV 1	Kac
101 BROMO	BRD4	1 4LR6	1xa
102 BROMO	BRD4	1 4LRG	1 xb
103 BROMO	BRD4	14 LYS	2sj
104 BROMO	BRD4	1 4LYW	21q
105 BROMO	BRD4	14 LZR	loc
106 BROMO	BRD4	14 LZS	146
107 BROMO	BRD4	14 MEN	25k
108 BROMO	BRD4	14 MEO	25v
109 BROMO	BRD4	1 4MEP	24y
110 BROMO	BRD4	14 MEQ	250
111 BROMO	BRD4	14 MR 3	1k0
112 BROMO	BRD4	14 MR 4	1k0
113 BROMO	BRD4	14 NQM	y1z
114 BROMO	BRD4	1 4NR8	211
115 BROMO	BRD4	1 4WIV	3p2
116 BROMO	BRD4	2 2LSP	Kac
117 BROMO	BRD4	2 2YEM	wsh
118 BROMO	BRD4	2 4KV4	Kac
119 BROMO	BRD9	14 NQN	y1z
120 BROMO	BRDT	14 FLP	jq1
121 BROMO	BRDT	14 KCX	1qk
122 BROMO	BRPF1	1 2RS9	Kac
123 BROMO	BRPF1	1 4QYD	Kac
124 BROMO	BRPF1	14 QYL	Kac
125 BROMO	BRPF1	1 4UYE	9f9
126 BROMO	CREBBP	1 1JSP	Kac
127 BROMO	CREBBP	1 2D82	ttr
128 BROMO	CREBBP	12 L 84	j28
129 BROMO	CREBBP	12 L 85	185
130 BROMO	CREBBP	1 2RNY	Kac
131 BROMO	CREBBP	1 3P1C	Kac
132 BROMO	CREBBP	13 P1D	mb3
133 BROMO	CREBBP	13 P 1 F	3pf
134 BROMO	CREBBP	13 SVH	krg
135 BROMO	CREBBP	14 A 9 K	tyl
136 BROMO	CREBBP	1 4N3W	Kac
137 BROMO	CREBBP	1 4NR4	21k
138 BROMO	CREBBP	1 4NR5	211
139 BROMO	CREBBP	1 4NR6	$21 n$
140 BROMO	CREBBP	1 4NR7	210
141 BROMO	CREBBP	1 4NYV	15e
142 BROMO	CREBBP	1 4NYW	203
143 BROMO	CREBBP	14 NYX	204
144 BROMO	KAT2B	1 1JM4	Kac
145 BROMO	KAT2B	1 1WUG	np1
146 BROMO	KAT2B	1 LWUM	np 2

147 BROMO	KAT2B	1 1ZS5	mib
148 BROMO	KAT2B	1 2RNW	Kac
149 BROMO	KAT2B	12 RNX	Kac
150 BROMO	PBRM1	2 2KTB	Kac
151 BROMO	PBRM1	5 3MB4	mb3
152 BROMO	PBRM1	5 4Q0o	2xc
153 BROMO	PHIP	2 3MB3	mb3
154 BROMO	SMARCA4	1 3UVD	mb3
155 BROMO	TRIM24	13034	Kac
156 BROMO	TRIM24	13035	Kac
157 BROMO	TRIM24	13036	Kac
158 BROMO	TRIM33	13050	Kac
159 BROMO	TRIM33	13 U5P	Kac
160 CHROMO	CBX1	1 1GUW	Kme2
161 CHROMO	CBX2	13 H 91	Kme3
162 CHROMO	CBX3	1 2L11	Kme3
163 CHROMO	CBX3	1 3DM1	Kme3
164 CHROMO	CBX3	1 3TZD	Kme2
165 CHROMO	CBX5	1 3FDT	Kme3
166 CHROMO	CBX6	1 3GV6	Kme3
167 CHROMO	CBX6	13 I 90	Kme3
168 CHROMO	CBX7	12 KVM	Kme2
169 CHROMO	CBX7	12 L 12	Kme3
170 CHROMO	CBX7	1 2L1B	Kme3
171 CHROMO	CBX8	13 I 91	Kme3
172 CHROMO	CHD1	1 2B2T	Kme3
173 CHROMO	CHD1	1 2B2U	Kme3
174 CHROMO	CHD1	12 B 2 V	Kme1
175 CHROMO	CHD1	1 2B2W	Kme3
176 CHROMO	CHD1	1 4NW2	Kme3
177 CHROMO	CHD1	14042	Kme2
178 CHROMO	MPHOSPH8	13 QO 2	Kme3
179 CHROMO	MPHOSPH8	$13 \mathrm{R93}$	Kme3
180 CHROMO	MPHOSPH8	1 3SVM	Kme4
181 DNMTCof	DNMT1	1 3PTA	SAH
182 DNMTCof	DNMT1	1 3SWR	SFG
183 DNMTCof	DNMT3A	12 QRV	SAH
184 HDAC	HDAC2	1 3MAX	IIx
185 HDAC	HDAC2	1 4LXZ	shh
186 HDAC	HDAC2	14 LY 1	$20 y$
187 HDAC	HDAC4	12 VQJ	tfg
188 HDAC	HDAC4	12 VQM	ha3
189 HDAC	HDAC4	12 VQO	tfg
190 HDAC	HDAC4	12 VQQ	tfg
191 HDAC	HDAC4	12 VQV	ha3
192 HDAC	HDAC4	1 4CBT	9f4
193 HDAC	HDAC4	1 4CBY	kee
194 HDAC	HDAC7	13 C 10	tsn
195 HDAC	HDAC7	1 3ZNR	nu9

196 HDAC	HDAC7	13 ZNS	nu7
197 HDAC	HDAC8	11 T64	tsn
198 HDAC	HDAC8	11 T67	b3n
199 HDAC	HDAC8	11 T69	shh
200 HDAC	HDAC8	1 1VKG	cri
201 HDAC	HDAC8	11 W 22	nhb
202 HDAC	HDAC8	12 V 5 W	Kac
203 HDAC	HDAC8	1 2V5X	v5x
204 HDAC	HDAC8	1 3EW8	b3n
205 HDAC	HDAC8	13 EWF	Kac
206 HDAC	HDAC8	1 3EZP	b3n
207 HDAC	HDAC8	1 3EZT	b3n
208 HDAC	HDAC8	13 F 06	b3n
209 HDAC	HDAC8	$13 \mathrm{FO7}$	age
210 HDAC	HDAC8	1 3FOR	tsn
211 HDAC	HDAC8	1 3MZ3	b3n
212 HDAC	HDAC8	1 3MZ4	b3n
213 HDAC	HDAC8	1 3MZ6	b3n
214 HDAC	HDAC8	$13 \mathrm{MZ7}$	b3n
215 HDAC	HDAC8	13 RQD	02g
216 HDAC	HDAC8	13 SFF	Odi
217 HDAC	HDAC8	1 3SFH	1 di
218 KAT	ATA1	14 PK 2	COA
219 KAT	ATA1	1 4PK3	COA
220 KAT	ATAT1	13 VWD	ACO
221 KAT	ATAT1	13 VWE	COA
222 KAT	ATAT1	1 4B5P	ACO
223 KAT	ATAT1	1 4GS4	ACO
224 KAT	EP300	1 3BIY	01k
225 KAT	EP300	1 4PZR	COA
226 KAT	EP300	14 PZS	ACO
227 KAT	EP300	1 4PZT	sop
228 KAT	HAT1	1 2POW	ACO
229 KAT	KAT2A	1 1Z4R	ACO
230 KAT	KAT2B	14 NSQ	COA
231 KAT	KAT5	$120 U 2$	ACO
232 KAT	MYST1	1 2GIV	ACO
233 KAT	MYST1	1 2PQ8	COA
234 KAT	MYST3	1 20ZU	ACO
235 KAT	MYST3	1 2RC4	ACO
236 KATSubs	ATA1	1 4PK2	Kac
237 KATSubs	ATA1	14 PK 3	Kac
238 KATSubs	EP300	1 4BHW	01k
239 KDM	JHDM1D	13 U 78	e67
240 KDM	KDM2A	14 QWN	Kme3
241 KDM	KDM2A	$14 \mathrm{QX7}$	Kme2
242 KDM	KDM2A	$14 \mathrm{QX8}$	Kme3
243 KDM	KDM2A	1 4QXB	Kme3
244 KDM	KDM2A	1 4QXC	Kme2

245 KDM	KDM2A	14 QXH	Kme
246 KDM	KDM4A	120 Q 6	Kme3
247 KDM	KDM4A	12052	Kme3
248 KDM	KDM4A	$120 \mathrm{T7}$	Kme1
249 KDM	KDM4A	120×0	Kme4
250 KDM	KDM4A	12 P 5 B	Kme3
251 KDM	KDM4A	12 PXJ	Kme1
252 KDM	KDM4A	12 QBC	Kme3
253 KDM	KDM4A	1 2Q8D	Kme2
254 KDM	KDM4A	12 Q E	Kme3
255 KDM	KDM4A	$12 \mathrm{VD7}$	pd2
256 KDM	KDM4A	12 WWJ	y28
257 KDM	KDM4A	12 YBP	Kme3
258 KDM	KDM4A	12 YBS	Kme3
259 KDM	KDM4A	13 NJY	8 xq
260 KDM	KDM4A	13 PDQ	kc6
261 KDM	KDM4A	13 RVH	hq2
262 KDM	KDM4A	13 U 4 S	Kme3
263 KDM	KDM4A	1 4AI9	dza
264 KDM	KDM4A	1 4BIS	8hq
265 KDM	KDM4A	1 4GD4	Ows
266 KDM	KDM4A	14 V 2 V	Kme3
267 KDM	KDM4D	14 HON	Kme3
268 KDM	KDM4DL	1 2W2I	pd2
269 KDM	KDM6A	13 AVR	Kme3
270 KDM	KDM6A	1 3ZPO	kOi
271 KDM	KDM6B	12 XXZ	8xq
272 KDM	NO66	1 4DIQ	pd2
273 KDM	PHF8	13 KV 4	Kme2
274 KDM	PHF8	1 4DOO	dza
275 KDM	UTY	1 3ZPO	kOi
276 MBT	L3MBTL	1 1OYX	mes
277 MBT	L3MBTL	11073	mes
278 MBT	L3MBTL	2 10YX	mes
279 MBT	L3MBTL	$210 Z 3$	mes
280 MBT	L3MBTL	2 2PQW	Kme2
281 MBT	L3MBTL	2 2RHI	Kme2
282 MBT	L3MBTL	2 2RHU	Kme2
283 MBT	L3MBTL	2 2RHX	Kme2
284 MBT	L3MBTL	2 2RHY	Kme1
285 MBT	L3MBTL	2 2RJC	mes
286 MBT	L3MBTL	2 2RJE	Kme2
287 MBT	L3MBTL	2 2RJF	Kme2
288 MBT	L3MBTL	$230 Q 5$	Kme1
289 MBT	L3MBTL	23 P 8 H	p8h
290 MBT	L3MBTL	2 3UWN	uwn
291 MBT	L3MBTL2	4 3F70	Kme1
292 MBT	L3MBTL3	1 4FL6	uwn
293 MBT	L3MBTL3	14 L 59	1 vz

294 MBT	L3MBTL	31072	mes
295 MBT	L3MBTL3	2 3UT1	epe
296 MBT	L3MBTL3	2 4FL6	uwn
297 MBT	L3MBTL	3 2RJC	mes
298 MBT	SCML2	2 2VYT	Kme1
299 MBT	SCML2	2 4EDU	Kme1
300 PHD	BAZ2A	14 Q 6 F	K
301 PHD	BPTF	2 2F6J	Kme3
302 PHD	BPTF	2 2FSA	Kme2
303 PHD	BPTF	2 2FUU	Kme3
304 PHD	BPTF	2 2RI7	Kme2
305 PHD	DIDO1	1 4L7X	Kme3
306 PHD	ING1	1 2QIC	Kme3
307 PHD	ING2	$12 \mathrm{G6Q}$	Kme3
308 PHD	ING4	12 PNX	Kme3
309 PHD	ING4	12 VNF	Kme3
310 PHD	ING5	1 3C6W	Kme3
311 PHD	KDM5A	3 2KGI	Kme3
312 PHD	KDM5A	3 3GL6	Kme3
313 PHD	MLL	3 3LQI	Kme2
314 PHD	MLL	3 3LQJ	Kme3
315 PHD	MLL5	14 L 58	Kme3
316 PHD	PHF13	1307 A	Kme3
317 PHD	PHF2	13 KQI	Kme3
318 PHD	PHF8	13 KV 4	Kme3
319 PHD	PYGO1	1 2VPE	Kme2
320 PHD	PYGO1	12 VPG	Kme2
321 PHD	PYGO1	12 YYR	Kme3
322 PHD	PYGO2	1 4UP0	Kme2
323 PHD	RAG2	12 V 83	Kme3
324 PHD	RAG2	12 V 85	Kme3
325 PHD	RAG2	12 V 86	Kme3
326 PHD	RAG2	12 V 87	Kme3
327 PHD	RAG2	12 V 88	Kme2
328 PHD	RAG2	12 V 89	Kme3
329 PHD	TAF3	12 K 17	Kme3
330 PHD	UHRF1	1 3SOW	Kme3
331 PMTAllo	PRMT3	1 3SMQ	tdu
332 PMTAllo	PRMT3	1 4HSG	ktd
333 PMTAllo	PRMT3	14 QQN	3 bq
334 PMTAllo	PRMT6	14 QPPP	36s
335 PMT	CARM1	1 2Y1W	849
336 PMT	CARM1	12 Y 1 X	845
337 PMT	CARM1	1 4IKP	4ik
338 PMTCof	ASH1L	1 3OPE	SAM
339 PMTCof	CAMKMT	1 4PWY	SAH
340 PMTCof	CARM1	12 V 74	SAH
341 PMTCof	CARM1	12 Y 1 W	SFG
342 PMTCof	CARM1	12 Y 1 X	SAH

343 PMTCof	CARM1	13 B 3 F	SAH
344 PMTCof	CARM1	1 4IKP	4ik
345 PMTCof	DOT1L	1 1NW3	SAM
346 PMTCof	DOT1L	1 3QOW	SAM
347 PMTCof	DOT1L	1 3QOX	SAH
348 PMTCof	DOT1L	1 3SR4	tt8
349 PMTCof	DOT1L	13 SXO	sx0
350 PMTCof	DOT1L	1 3UWP	5id
351 PMTCof	DOT1L	1 4EK9	ep4
352 PMTCof	DOT1L	1 4EKG	Oqj
353 PMTCof	DOT1L	1 4EKI	Oqk
354 PMTCof	DOT1L	1 4EQZ	aw0
355 PMTCof	DOT1L	14 ERO	aw1
356 PMTCof	DOT1L	1 4ER3	Oqk
357 PMTCof	DOT1L	14 ER5	Oqk
358 PMTCof	DOT1L	1 4ER6	aw2
359 PMTCof	DOT1L	1 4ER7	aw3
360 PMTCof	DOT1L	1 4HRA	ep6
361 PMTCof	EHMT1	12 IGQ	SAH
362 PMTCof	EHMT1	12 RFI	SAH
363 PMTCof	EHMT1	13 FPD	SAH
364 PMTCof	EHMT1	13 HNA	SAH
365 PMTCof	EHMT1	13 MOO	SAH
366 PMTCof	EHMT1	$13 \mathrm{SW9}$	SFG
367 PMTCof	EHMT1	13 SWC	SAH
368 PMTCof	EHMT1	14 H 4 H	SAH
369 PMTCof	EHMT1	14 I 51	SAH
370 PMTCof	EHMT2	1 208J	SAH
371 PMTCof	EHMT2	13 K 5 K	SAH
372 PMTCof	EHMT2	1 3RJW	SAH
373 PMTCof	EHMT2	14 NVQ	SAH
374 PMTCof	METTL21A	1 4LEC	SAH
375 PMTCof	METTL21C	14 MTL	SAH
376 PMTCof	METTL21D	1 4LG1	SAM
377 PMTCof	MLL	12 W 5 Y	SAH
378 PMTCof	MLL	12 W 5 Z	SAH
379 PMTCof	NSD1	1300 I	SAM
380 PMTCof	PRMT1	1 10R8	SAH
381 PMTCof	PRMT1	1 1ORH	SAH
382 PMTCof	PRMT1	1 1ORI	SAH
383 PMTCof	PRMT1	1 3Q7E	SAH
384 PMTCof	PRMT3	1 2FYT	SAH
385 PMTCof	PRMT5	1 4GQB	Oxu
386 PMTCof	PRMT6	14 HC 4	SAH
387 PMTCof	PRMT6	1 4QQK	37h
388 PMTCof	SETD2	1 4FMU	Oum
389 PMTCof	SETD2	14 H 12	SAH
390 PMTCof	SETD3	1 3SMT	SAM
391 PMTCof	SETD6	1 3QXY	SAM

392 PMTCof	SETD6	13 RCO	SAM
393 PMTCof	SETD7	1 1MT6	SAH
394 PMTCof	SETD7	1 1N6A	SAM
395 PMTCof	SETD7	1 1N6C	SAM
396 PMTCof	SETD7	11095	SAH
397 PMTCof	SETD7	1 XQQH	SAH
398 PMTCof	SETD7	$12 \mathrm{F69}$	SAH
399 PMTCof	SETD7	13 CBM	SAH
400 PMTCof	SETD7	1 3CBO	SAH
401 PMTCof	SETD7	13 3CBP	SFG
402 PMTCof	SETD7	13 M 53	SAH
403 PMTCof	SETD7	1 3M54	SAH
404 PMTCof	SETD7	1 3M55	SAH
405 PMTCof	SETD7	1 3M56	SAH
406 PMTCof	SETD7	13 M 57	SAH
407 PMTCof	SETD7	1 3M58	SAH
408 PMTCof	SETD7	13 M 59	SAH
409 PMTCof	SETD7	1 3M5A	SAH
410 PMTCof	SETD7	13055	SAH
411 PMTCof	SETD7	13 VUZ	k15
412 PMTCof	SETD7	13 VVO	kh3
413 PMTCof	SETD7	14 E 47	SAM
414 PMTCof	SETD7	14 J 7 F	SAH
415 PMTCof	SETD7	$14 \mathrm{J7I}$	SAH
416 PMTCof	SETD7	14183	SAM
417 PMTCof	SETD7	$14 \mathrm{J8O}$	SAH
418 PMTCof	SETD7	1 4JDS	SAM
419 PMTCof	SETD7	1 4JLG	SAM
420 PMTCof	SETD8	11 ZKK	SAH
421 PMTCof	SETD8	12 BQZ	SAH
422 PMTCof	SETD8	1 3F9W	SAH
423 PMTCof	SETD8	$13 \mathrm{F9X}$	SAH
424 PMTCof	SETD8	$13 \mathrm{F9Y}$	SAH
425 PMTCof	SETD8	$13 \mathrm{F9Z}$	SAH
426 PMTCof	SETD8	$14 \mathrm{IJ8}$	SAM
427 PMTCof	SETMAR	$13 \mathrm{BO5}$	SAH
428 PMTCof	SMYD1	1 3N71	SFG
429 PMTCof	SMYD2	13 RIB	SAH
430 PMTCof	SMYD2	13 37B	SAM
431 PMTCof	SMYD2	13 37D	SAH
432 PMTCof	SMYD2	$13 \mathrm{S7F}$	SAM
433 PMTCof	SMYD2	1 3S7J	SAM
434 PMTCof	SMYD2	1 3TG4	SAM
435 PMTCof	SMYD2	1 3TG5	SAH
436 PMTCof	SMYD2	1406 F	SAH
437 PMTCof	SMYD3	1 3MEK	SAM
438 PMTCof	SMYD3	$130 X F$	SAH
439 PMTCof	SMYD3	1 30XG	SAH
440 PMTCof	SMYD3	$130 X L$	SAH

441 PMTCof	SMYD3	13 PDN	SFG
442 PMTCof	SMYD3	1 3QWP	SAM
443 PMTCof	SMYD3	13 RUO	SFG
444 PMTCof	SUV39H2	1 2R3A	SAM
445 PMTCof	SUV420H1	$13 \mathrm{S8P}$	SAM
446 PMTCof	SUV420H1	1 4BUP	SAM
447 PMTCof	SUV420H2	1 3RQ4	SAM
448 PMTCof	SUV420H2	1 4AU7	SAH
449 PMT	EHMT1	1 2RFI	Kme2
450 PMT	EHMT1	1 3FPD	q4a
451 PMT	EHMT1	13 HNA	Kme1
452 PMT	EHMT1	13 MO 2	e67
453 PMT	EHMT1	$13 \mathrm{MO5}$	e72
454 PMT	EHMT2	13 K 5 K	dxq
455 PMT	EHMT2	1 3RJW	ciq
456 PMT	EHMT2	14 NVQ	2od
457 PMT	MLL	12 W 5 Z	Kme2
458 PMT	PRMT5	14 GQB	R
459 PMT	SETD2	1 4FMU	Oum
460 PMT	SETD6	13 RCO	K
461 PMT	SETD7	1109 S	Kme1
462 PMT	SETD7	1 XXQH	Kme1
463 PMT	SETD7	$12 \mathrm{F69}$	Kme1
464 PMT	SETD7	1 3CBM	Kme1
465 PMT	SETD7	13 CBO	Kme1
466 PMT	SETD7	13 M 55	Kme1
467 PMT	SETD7	13 M 56	Kme2
468 PMT	SETD7	1 3M58	Kme1
469 PMT	SETD7	13 M 59	Kme2
470 PMT	SETD7	1 3M5A	Kme3
471 PMT	SETD7	13055	Kme1
472 PMT	SETD7	13 VUZ	k15
473 PMT	SETD7	13 VVO	kh3
474 PMT	SETD7	1 4E47	On6
475 PMT	SETD7	1 4JDS	114
476 PMT	SETD7	1 4JLG	118
477 PMT	SETD8	12 BQZ	Kme1
478 PMT	SETD8	$13 \mathrm{F9X}$	Kme2
479 PMT	SETD8	1 3F9Y	Kme1
480 PMT	SMYD2	$13 \mathrm{S7B}$	nh5
481 PMT	SMYD2	1 3S7D	Kme1
482 PMT	SUV420H2	1 4AU7	Kme2
483 PWWP	BRPF1	12 X 4 W	Kme3
484 PWWP	BRPF1	12 X 4 X	Kme3
485 PWWP	BRPF1	12 X 4 Y	Kme3
486 PWWP	BRPF1	13 MO	Kme3
487 PWWP	HDGFRP2	1 3QJ6	Kme3
488 PWWP	ZMYND11	14 N 4 H	Kme3
489 PWWP	ZMYND11	1 4N4I	Kme3

490 RNMTCof	CMTR1	14 N 48	SAM
491 RNMTCof	CMTR1	1 4N49	SAM
492 RNMTCof	DIMT1	1 1ZQ9	SAM
493 RNMTCof	FBL	1 2IPX	mta
494 RNMTCof	FTSJ2	12 NYU	SAM
495 RNMTCof	MEPCE	$13 \mathrm{GO7}$	SAM
496 RNMTCof	METTL1	1 3CKK	SAM
497 RNMTCof	NSUN4	$14 \mathrm{FP9}$	SAM
498 RNMTCof	NSUN4	14 FZV	SAM
499 RNMTCof	NSUN5	1 2B9E	SAM
500 RNMTCof	RNMT	13 BGV	SAH
501 RNMTCof	RNMT	1 3EPP	SFG
502 RNMTCof	TARBP1	1 2HA8	SAH
503 RNMTCof	TGS1	1 3EGI	adp
504 RNMTCof	TGS1	1 3GDH	SAH
505 RNMTCof	TRDMT1	11 G 55	SAH
506 RNMTCof	TRMT10A	1 4FMW	SAH
507 RNMTCof	TRMT61B	12 B 25	SAM
508 RNMT	TGS1	13 GDH	mgp
509 SIRT	SIRT1	1 4I5I	NAD
510 SIRT	SIRT1	1 4IF6	APR
511 SIRT	SIRT1	14 KXQ	APR
512 SIRT	SIRT2	13 ZGV	AR6
513 SIRT	SIRT3	1 4BN4	AR6
514 SIRT	SIRT3	1 4BN5	CNA
515 SIRT	SIRT3	1 4BN5	sr7
516 SIRT	SIRT3	1 4BV3	NAD
517 SIRT	SIRT3	1 4BVB	AR6
518 SIRT	SIRT3	1 4BVG	oad
519 SIRT	SIRT3	1 4BVH	oad
520 SIRT	SIRT3	1 4FVT	CNA
521 SIRT	SIRT3	1 4JSR	1 nq
522 SIRT	SIRT3	$14 \mathrm{JT8}$	1 nr
523 SIRT	SIRT3	$14 \mathrm{JT9}$	1 ns
524 SIRT	SIRT5	1 2B4Y	APR
525 SIRT	SIRT5	$12 \mathrm{B4Y}$	epe
526 SIRT	SIRT5	1 2NYR	svr
527 SIRT	SIRT5	13 3RIY	NAD
528 SIRT	SIRT5	14 F 56	cgk
529 SIRT	SIRT5	1 4G1C	CNA
530 SIRT	SIRT6	13 K 35	APR
531 SIRT	SIRT6	13 PKI	AR6
532 SIRT	SIRT6	13 PKJ	a2n
533 SIRT	SIRT6	$13 \mathrm{GG6}$	APR
534 SIRTSubs	SIRT2	14 L 30	Kac
535 SPINDLIN	SPIN1	14 H 75	nhe
536 SPINDLIN	SPIN1	1 4MZF	Rme2a
537 SPINDLIN	SPIN1	24 H 75	Kme3
538 SPINDLIN	SPIN1	2 4MZF	Kme3

539 SPINDLIN	SPIN1	2 4MZG	Kme3
540 SPINDLIN	SPIN1	2 4MZH	Kme3
541 SPINDLIN	SPIN4	1 4UY4	Kme3
542 TUDOR	CCDC101	2 3ME9	Kme3
543 TUDOR	CCDC101	2 3MEA	Kme3
544 TUDOR	CCDC101	2 3MET	Kme2
545 TUDOR	CCDC101	2 3MEU	Kme3
546 TUDOR	CCDC101	2 3MEV	Kme3
547 TUDOR	JMJD2A	1 2GFA	Kme3
548 TUDOR	JMJD2A	12 QQS	Kme3
549 TUDOR	MSL3L1	130 A 6	Kme1
550 TUDOR	MSL3L1	$130 \mathrm{B9}$	nhe
551 TUDOR	PHF1	12 MOO	Kme3
552 TUDOR	PHF1	14 HCZ	Kme3
553 TUDOR	PHF19	1 4BD3	Kme3
554 TUDOR	SMN1	1 4A4E	Rme2s
555 TUDOR	SMN1	1 4A4G	Rme2a
556 TUDOR	SMN1	$14 \mathrm{QQ6}$	36X
557 TUDOR	SMNDC1	1 4A4F	Rme2s
558 TUDOR	SMNDC1	14 A 4 H	Rme2a
559 TUDOR	SND1	1 3OMC	Rme2s
560 TUDOR	SND1	1 3OMG	Rme2s
561 TUDOR	TDRD3	12 LTO	Rme2a
562 TUDOR	TP53BP1	1 2IG0	Kme2
563 TUDOR	TP53BP1	1 2LVM	Kme2
564 TUDOR	TP53BP1	1 3LGF	Kme2
565 TUDOR	TP53BP1	13 LGL	Kme2
566 TUDOR	TP53BP1	13 LHO	Kme2
567 TUDOR	TP53BP1	1 4CRI	Kme2
568 TUDOR	TP53BP1	14 RG 2	300
569 TUDOR	UHRF1	1 2L3R	Kme3
570 TUDOR	UHRF1	1 3ASK	Kme3
571 TUDOR	UHRF1	1 3DB3	Kme3
572 TUDOR	UHRF1	1 4GY5	Kme3
573 TUDOR	UHRF1	1 4QQD	36X
574 TUDOR	UHRF1	14 QQD	36X
575 YEATS	MLLT3	1 4TMP	Kac

