About A public-private partnership that supports the discovery of new medicines through open access research. Mission and Philosophy Partners Governance Collaborators Laboratories Key Achievements Research Collaborations and Communications Why Companies Enter Open Science Partnerships with SGC SGC Open Science Policy Equity, Diversity and Inclusion FAQs Science TARGET ENABLING PACKAGES (TEPs) TISSUE PLATFORM PROTEIN STRUCTURES PUBLICATIONS CHEMICAL PROBES Donated chemical probes Biological probes Human Kinase Chemical Probe Program Probes against other protein classes RECOMBINANT ANTIBODIES Structure-guided Drug Discovery Coalition (SDDC) SDDC Publications CREATE ChemNET Research Program Trainees Open Access Learning Impact Faculty & Industry Participants Structural & Chemical Biology Bootcamp Events Structural Biology Programme Structural Parasitology Rare Diseases Genome Integrity and Neurodegeneration Growth Factor Signalling Integral Membrane Proteins Metabolic Enzymes Phosphorylation-Dependent Signalling Protein Kinases Ubiquitin Biology Chemical Biology Antibodies Protein Families Methyl Lysine Readers Histone Deacetylases Histone Acetyltransferases Demethylases Bromodomains Protein Methyltransferases Probe Development Screening Platforms Epigenetic Cell Assays Fragment Based Screening Informatics Medicinal Chemistry ChromoHub Phylogenetic Trees UbiHub Phylogenetic Trees Histone Tails Epigenetics Pocketome Technological Science Biotechnology Biophysics Screening Platforms Research Informatics Protein Crystallography Medicinal Chemistry Reagents & Resources Reagents Chemical Probes Antibodies SGC Vectors SGC Plasmids SGC Constructs Resources Structure Gallery Protein Production Protocols ChromoHub Phylogenetic Trees UbiHub Phylogenetic Trees Histone Tails Fragment Screening Crystal Forms Fragalysis MichaelaNGLo Technologies High Throughput Protein Crystallisation Lex Bubbling System Frapid People Global SGC Director Aled Edwards Susan McCormick Max Morgan Academic Collaborators Industrial/ SME collaborators Non-Scientists SGC OCN Mat Todd SGC Neuro Edward Fon Ziv Gan-Or Thomas Durcan Roxanne Lariviere Peter McPherson Jean-François Trempe Carl Laflamme Toronto Cheryl Arrowsmith Dalia Barsyte-Lovejoy Peter J. Brown Jinrong Min Takis Prinos Matthieu Schapira Masoud Vedadi Levon Halabelian Biotechnology Crystallography UNC Tim Willson Alison Axtman David Drewry Karolinska Michael Sundström Susanne Gräslund Louise Berg Per-Johan Jakobsson Frankfurt Stefan Knapp Susanne Müller-Knapp Apirat Chaikuad Thomas Hanke Vladimir Rogov Krishnal Saxena Andreas Joerger Václav Němec News & Outreach News & Events SGC News Symposia & Workshops Blog Press Releases Public Events Public Engagement SGC Languages General Public Open Lab Notebooks Schools Media Patient Groups Governments TOronto Ubiquitin Club And Network (TOUCAN) Careers Tweets by thesgconline
A public-private partnership that supports the discovery of new medicines through open access research.
GSK484 A chemical probe for PAD-4 (Protein-arginine deiminase type-4)GSK484 is avaliable from Cayman Chemical and Sigma. For any inquiries please contact proberequests@thesgc.org.group newOverview PAD4 is a calcium-dependent enzyme which catalyses the transformation of protein arginine residues into citrulline, with the release of ammonia. PAD4-dependent citrullination/deimination of histones plays a key role in the histone code and is predicted to manifest with wide-ranging transcriptional and structural functions, including recently-discovered roles in the regulation of stem cell maintenance (1). In addition to a growing rationale in oncology, PAD4 has strong associations with multiple immune and inflammatory processes. For example, in rheumatoid arthritis the enzyme citrullinates joint proteins to break tolerance and provoke autoimmunity, with antibodies against these citrullinated epitopes (and against PAD4 itself) representing a diagnostic hallmark of the disease. In addition, PAD4 is known to promote profound chromatin decondensation during the innate immune response to infection in neutrophils by mediating formation of neutrophil extracellular traps (NETs). This is an enigmatic and exciting field where initially proposed roles for NETs in trapping pathogens for host-defence purposes (2) have been extended to demonstrate that unrestrained NETosis may be crucial for pathological deep venous thrombosis (3) ischemia/reperfusion injury (4), systemic lupus erythematosis (5), small vessel vasculitis (6) and also in rheumatoid arthritis (7). GlaxoSmithKline has developed a PAD4-specific probe (8), namely GSK484 and has made it available as part of the SGC epigenetics initiative. GSK484 potently binds to the low-calcium form of PAD4 in a reversible manner (IC50 of 50 nM) and appears to be competitive with substrate. GSK106 is a related control molecule (IC50 > 100 µM) which offers important confirmation of PAD4-specific effects. Detailed crystallography work with this compound series has additionally demonstrated binding to a new conformation of the PAD4 active site where key residues are re-ordered to form a β-hairpin. GSK484’s selectivity for PAD4 over PAD1-3 was shown in cells and also confirmed with recombinant enzymes. This probe is an inhibitor of cellular citrullination in primary neutrophils, and further phenotypic profiling has confirmed its ability to inhibit NET formation in both mouse and human neutrophils. GSK484 exhibits favourable pharmacokinetic profiles, with low-moderate clearance, and good volume of distribution and half-life in mouse and rat, and has suitable a PK profile for use as a potential in vivo tool. Properties GSK484 GSK106 (negative control) Physical and chemical properties for GSK484 Molecular weight 473.2 Molecular formula C27H31N5O3 IUPAC name (3-amino-4-hydroxy-piperidin-1-yl)-(8-(7-(cyclopropyl-methyl)-7-aza-bicyclo[4.3.0]nona-1(6),2,4,8-tetraen-8-yl)-5-methoxy-7-methyl-7,9-diaza-bicyclo[4.3.0]nona-1,3,5,8-tetraen-3-yl)-methanone MollogP 2.665 PSA 71.66 No. of chiral centres 2 No. of rotatable bonds 6 No. of hydrogen bond acceptors 6 No. of hydrogen bond donors 3 Physical and chemical properties for GSK106 (Negative Control) Molecular weight 437.2 Molecular formula C24H27N5O.HCl IUPAC name (3-amino-piperidin-1-yl)-(8-(7-ethyl-7-aza-bicyclo[4.3.0]nona-1(6),2,4,8-tetraen-8-yl)-7-methyl-7,9-diaza-bicyclo[4.3.0]nona-1,3,5,8-tetraen-3-yl)-methanone; MollogP 3.13 PSA 47.78 No. of chiral centres 1 No. of rotatable bonds 4 No. of hydrogen bond acceptors 4 No. of hydrogen bond donors 3 SMILES: GSK484: Cn1c2c(cc(cc2nc1c1cc2ccccc2n1CC1CC1)C(N1CC[C@H]([C@H](C1)N)O)=O)OC GSK106: CCn1c(cc2ccccc12)c1nc2cc(ccc2n1C)C(N1CC[C@]C(C1)N)=O.[Cl] InChI: GSK484: InChI=1S/C27H31N5O3/c1-30-25-20(11-18(13-24(25)35-2)27(34)31-10-9-23(33)19(28)15-31)29-26(30)22-12-17-5-3-4-6-21(17)32(22)14-16-7-8-16/h3-6,11-13,16,19,23,33H,7-10,14-15,28H2,1-2H3/t19-,23+/m0/s1 GSK106: InChI=1S/C24H27N5O.ClH/c1-3-29-20-9-5-4-7-16(20)14-22(29)23-26-19-13-17(10-11-21(19)27(23)2)24(30)28-12-6-8-18(25)15-28;/h4-5,7,9-11,13-14,18H,3,6,8,12,15,25H2,1-2H3;1H InChIKey: GSK484: BDYDINKSILYBOL-WMZHIEFXSA-N GSK106: BSPPDIVXIPHRLQ-UHFFFAOYSA-N PK Propertiesin vivo PK Profile of GSK484 GSK Data - shared with SGC February y2016. All animal studies were ethically reviewed and carried out in accordance with Animals (Scientific Procedures) Act 1986 and the GSK Policy on the Care, Welfare and Treatment of Animals. References Slade DJ, Horibata S, Coonrod SA, Thompson PR, Bioessays, 2014, 36(8):736-740. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A, Science, 2004 303(5663):1532-5. Martinod K, Demers M, Fuchs TA, Wong SL, Brill A, Gallant M, Hu J, Wang Y, Wagner DD. Proc Natl Acad Sci U S A. 2013, 110(21):8674-9. Savchenko AS, Borissoff JI, Martinod K, De Meyer SF, Gallant M, Erpenbeck L, Brill A, Wang Y, Wagner DD, Blood, 2014, 123(1):141-8. Hakkim A, Fürnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, Herrmann M, Voll RE, Zychlinsky A., Proc Natl Acad Sci USA., 2010, 107(21):9813-8. Ohlsson SM2, Ohlsson S, Söderberg D, Gunnarsson L, Pettersson Å, Segelmark M, Hellmark T., Clin Exp Immunol., 2014, 176(3):363-72. Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S, Knight JS, Friday S, Li S, Patel RM, Subramanian V, Thompson P, Chen P, Fox DA, Pennathur S, Kaplan MJ., Sci Transl Med., 2013, 5(178):178ra40. Lewis HD, Liddle J, Coote JE, Atkinson SJ, Barker MD, Bax BD, Bicker KL, Bingham RP, Campbell M, Chen YH, Chung CW, Craggs PD, Davis RP, Eberhard D, Joberty G, Lind KE, Locke K, Maller C, Martinod K, Patten C, Polyakova O, Rise CE, Rüdiger M, Sheppard RJ, Slade DJ, Thomas P, Thorpe J, Yao G, Drewes G, Wagner DD, Thompson PR, Prinjha RK, Wilson DM., Nat Chem Biol. 2015,11(3):189-191.