Dalia Barsyte-Lovejoy

Dalia Barsyte-Lovejoy

SGC Toronto

Barsyte-Lovejoy

Biography

Dr. Dalia Barsyte-Lovejoy, PhD is an Assistant Professor at the Department of Pharmacology and Toxicology, UofT, and Principal Investigator at the SGC-Toronto, working to understand fundamental regulatory mechanisms of epigenetic proteins and their pharmacological modulation in cancer. The group’s research focuses on disease mechanisms, therapeutic targets, and chemical probe discovery, resulting in over 30 extensively characterized compounds that have helped shape the emerging field of epigenetics and enabled over 50 collaborative projects that are uncovering new epigenetic mechanisms in cancer and its treatment.

Research Areas

We are interested in understanding the mechanism of epigenetic regulators and posttranslational modifications that control cancer cell growth, differentiation, and therapy response. Protein lysine and arginine methyltransferases regulate transcription, genome stability, splicing, RNA metabolism, and other cell processes dictated by which substrates these enzymes methylate. Lysine methyltransferases such as EZH2 and NSD2 primarily methylate histones to establish repressive and active chromatin. In contrast, arginine methyltransferases have a broad scope of substrates ranging from histones to signaling molecules, enzymes, and structural proteins. Epigenetic chromatin regulation, transcriptome, and cellular signaling are fine-tuned by ubiquitin modification. Our work seeks to understand how these posttranslational modifications are misregulated in cancer and identify new therapeutic targets.

Through multidisciplinary research that includes cell and chemical biology, protein structural biology, and many collaborative studies with colleagues across industry and academia, the SGC chemical probes project has generated several probes for methyltransferases, ubiquitin ligases, and deubiquitylases. We are currently using these chemical probes to explore the cellular pathways in poor prognosis acute myeloid leukemia, pancreatic, lung and breast cancer.

 Epigenetics, chromatin and cellular signaling regulators

Epigenetics and chromatin architecture regulators


 

 

 

Epigenetics is about how the DNA code is regulated. Proteins that bind/modify DNA and histones play essential roles in cell identity determination, transcription, and genome maintenance. They are often responsible for diseases such as cancer or uncontrolled inflammation.

We are studying how epigenetic proteins regulate normal cell processes and how these are subverted in disease. 

 

Chemical probes as tools for cancer target discovery


 

Chemical probes as tools for cancer target discovery

 

To study epigenetic modifier proteins, we need genetic and pharmacological tools. Chemical probe compounds that potently and selectively inhibit or degrade the target proteins in cells provide tools for modulating activating/repressing histone marks and other cellular signaling pathways. By discovering and using chemical probes, we expand our understanding of the protein function and its therapeutic utility to establish a biological rationale in cancer therapy.

 

 

 

Link to Open Lab notebooks that features science community posts on our various projects https://openlabnotebooks.org/

2012

Histone recognition and large-scale structural analysis of the human bromodomain family.

Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Müller S, Pawson T, Gingras AC, Arrowsmith CH, Knapp S

Cell. 2012-3-30 . 149(1):214-31 .doi: 10.1016/j.cell.2012.02.013

PMID: 22464331

2011

Optimization of cellular activity of G9a inhibitors 7-aminoalkoxy-quinazolines.

Liu F, Barsyte-Lovejoy D, Allali-Hassani A, He Y, Herold JM, Chen X, Yates CM, Frye SV, Brown PJ, Huang J, Vedadi M, Arrowsmith CH, Jin J

J. Med. Chem.. 2011-9-8 . 54(17):6139-50 .doi: 10.1021/jm200903z

PMID: 21780790

A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells.

Vedadi M, Barsyte-Lovejoy D, Liu F, Rival-Gervier S, Allali-Hassani A, Labrie V, Wigle TJ, Dimaggio PA, Wasney GA, Siarheyeva A, Dong A, Tempel W, Wang SC, Chen X, Chau I, Mangano TJ, Huang XP, Simpson CD, Pattenden SG, Norris JL, Kireev DB, Tripathy A, Edwards A, Roth BL, Janzen WP, Garcia BA, Petronis A, Ellis J, Brown PJ, Frye SV, Arrowsmith CH, Jin J

Nat. Chem. Biol.. 2011-7-10 . 7(8):566-74 .doi: 10.1038/nchembio.599

PMID: 21743462